EG3002

エンジン自動電子ガバナー取扱説明書

エンジン始動時の黒煙抑制及びアイドル運転機能を備えます 外付け、内蔵、及び PT ポンプアクチュエータに適用します 極端低速応答エンジンモードが選択できます

*記載されているメーカー名および型番は参考のためであり、これらは該当メーカーの製品で はありません。

第一章 概要

EG3002 電子制御器は、電磁ピックアップ(MPU)からの入力信号を受信し、設定されたエンジン回転数に応じてアクチュエータへの入力電圧を制御することで、エンジン回転数を安定的に維持する機能を備えています。エンジン始動時の黒煙抑制機能を有し、アイドリング運転の安定化や、回転数の緩やかな上昇制御が可能です。また、MPUの周波数範囲 $600 \sim 9500$ Hz に対応し、Cummins 高ゲイン型エンジン(PT PUMP)や、応答速度の極めて遅いエンジンに適したモード選択機能を搭載しています。

第二章 電気仕様

操作電圧 (端子1、2)

電圧 10 – 32 Vdc

出力 (端子 4、5)

電圧 最大は入力操作電圧の 95% 電流 連続 7A 最小 0.5A

最大 15A 10 秒

MPU 入力範囲 (端子 10、11)

周波数 10 – 10,000 Hz 電圧 1 – 120 Vac (RMS)

周波数調整範囲

速度調整ノブ(25回転)

4 段ディップスイッチと組合せて調整 600-9,500Hz 保存温度

外部周波数調整 (端子6、7、9)

最大+/- 7% @ $5 K\Omega 1$ watt ポテンショメータ

並列使用時の負荷分配入力 ILS (端子 6、8)

入力抵抗 $2k\Omega$ 以上

入力範囲 +/- 5 Vdc or 0 - 10 Vdc

感度 15% @ 10 Vdc

アイドル制御 (端子2、3)

調整範囲 通常回転速度の 30 - 90%

回転速度上昇時間

3-20 秒 調整可能

速度下垂率 Droop

0-4% 可調整

安定性

負荷固定時の回転速度変動範囲 ±0.25%以下

静的消費電力

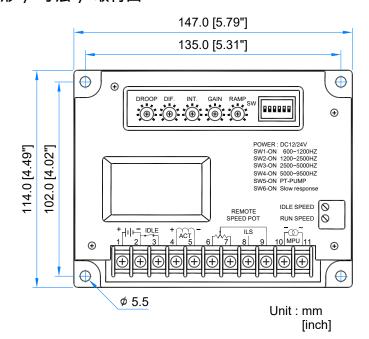
1 Watt @ 12 Vdc 以下 2 Watt @ 24 Vdc 以下

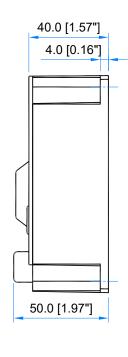
回転速度の温度ドリフト

-40-+80°C⋅ 3%以下

使用条件

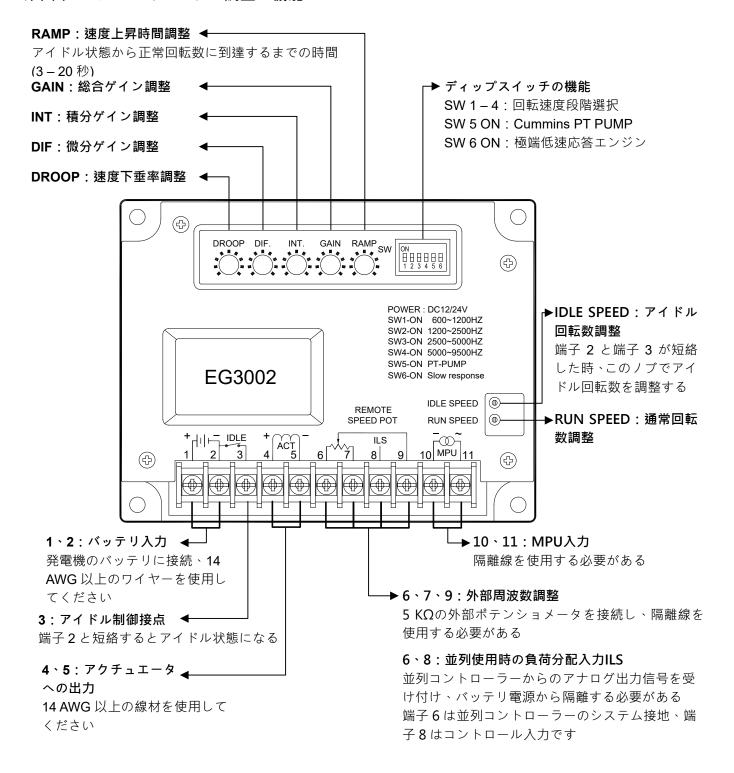
操作温度 -40 - +80 °C 保存温度 -40 - +85 °C 相対湿度 95%以下 振 動 5.5 Gs @ 60 Hz

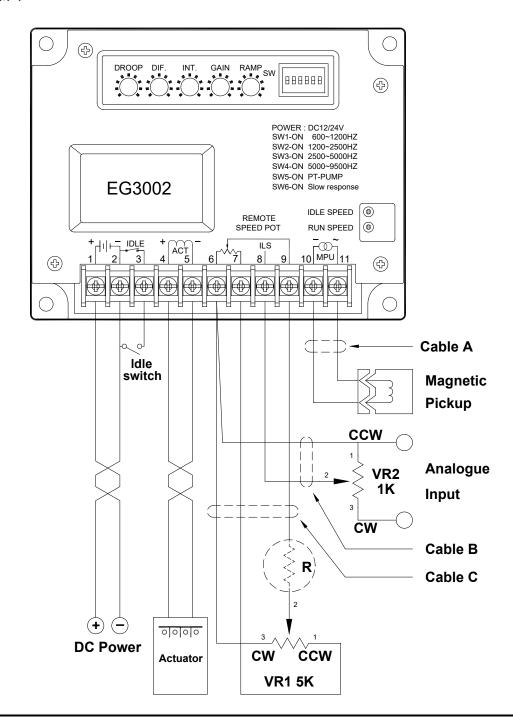

寸法


147.0 (L) x 114.0 (W) x 50.0 (H) mm 5.79 (L) x 4.49 (W) x 1.97 (H) inch

質 量

690 g +/- 2% 1.52 lb +/- 2%


第三章 外形 / 寸法 / 取付図


図一 寸法図

第四章 ポテンショメータの調整と機能

EG3002 3

第五章 結線図

注意

- 1. 設置は資格を持つ専門技術者に依頼することを推奨します。不適切な設置や配線は、人体の傷害や機器の損傷を引き起こす可能性があります。
- 2. 本機にはスピードオーバー保護機能がないので、スピードオーバー保護装置を追加することをお勧めします。
- 3.バッテリと本機は直接接続し、20A のスローブロータイプのヒューズ保護を設けてください。
- 4. 端子 1、2、4、5 には 2.0mm² (14 AWG) 以上のケーブルを使用してください。
- 5. Cable A、Cable B、Cable Cには 26 AWG以上の銅網覆膜隔離線を使用してください。
- 6.ノイズ干渉を減らすために、隔離線の接地銅網は片側のみ接地してください。

第六章 調整

6.1 試運転前調整

- 6.1.1 エンジンが停止している状態で、アクチュエータ のロッドを前後に動かします。動かす際はスムー ズであり、ロッドに隙間がないことを確認してく ださい。隙間があると安定した調整が難しくなる。
- 6.1.2 周波数区間選択:エンジンの正常回転数で電磁センサー(MPU)から発せられる入力信号の周波数範囲に基づいて、適切な周波数区間を選択します。

エンジン回転数(RPM)×フライホイールギア

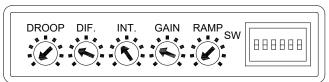
MPU 周波数 = 数 60 秒

回転速度段階選択			
SW-1 ON	600 – 1200 Hz		
SW-2 ON	1200 – 2500 Hz		
SW-3 ON	2500 – 5000 Hz		
SW-4 ON	5000 – 9500 Hz		

注意

指撥スイッチ 1 から 4 は、同時で 1 つだけを **ON** に設定できます。

フライホイールギア数が不明な場合、最低速 SW-2 ON から最高速 SW-4 ON までを順番にテストしてください。


6.1.3 SW-5 ON 時、コントローラーのゲインが低くなり、Cummins PT-PUMP または抵抗の低い内蔵 アクチュエータに適用されます。

6.1.4 VR 設定

正常回転速度 (Run Speed): 反時計回りに最小に設定

アイドル回転速度 (IDLE Speed): 時計回りに最大に設定 (Cummins PT-PUMP の場合は反時計回りに最小に調整)

他の調整では以下の図の位置で調整してください:

外部 VR を使用する場合は、外部 VR を中央の位置に調整してください。

端子 2 と端子 3 のアイドルスイッチをオープン (OPEN)にしてください。

注意

Run Speed と IDLE Speed の VR は 25 回転精密 タイプであり、調整しきった際に音が発生しますが、 故障することはありません。

6.2 初回試運転

6.2.1 エンジン始動失敗:

可能原因については、トラブルシューティング7.1 を参照してください。エンジンが正常に始動しない場合は、*Run Speed* を上げるか、周波数セレクター・スイッチをより高い周波数の設定に調整してください。(このとき、*Run Speed* は最小位置に戻してください。)

- 6.2.2 エンジンが正常に始動した場合は、Run Speed を目標回転数までゆっくりと調整してください。目標回転数まで調整できない場合は、周波数セレクター・スイッチをより高い周波数の設定に変更し、Run Speed を最小位置に戻してください。
- 6.2.3 エンジン始動後に回転数が高すぎる場合は、周波数セレクター・スイッチをより低い周波数の設定に調整してください。

注意

初回試運転時、エンジン回転数が他の要因によって 制御できない可能性があります。そのため、燃料遮 断バルブなどのエンジンを緊急停止できる追加装置 の取り付けを推奨します。

6.3 アイドル速度及び加速時間の調整

- 6.3.1 エンジンが正常に運転している状態で、端子 2 と端子 3 を短絡すると、エンジン回転数が IDLE 回転数まで低下します。
- 6.3.2 *IDLE Speed* を反時計回りに調整し、エンジンに 適したアイドリング回転数に設定します。
- 6.3.3 RAMP 時間が長すぎると、GCU の低速保護が作動する可能性があります。一方で、RAMP 時間が短すぎると、燃料の燃焼が不完全になる恐れがあります。
- 6.3.4 端子 2 と端子 3 を開放すると、エンジンは IDLE 回転数から通常回転数へ上昇します。RAMP 時間が適切でない場合は、再度端子 2 と端子 3 を短絡し、RAMP 調整ノブを調整してください。この手

EG3002 5

順を繰り返し、正常に運転するまで調整を行います。

- 6.3.5 エンジンを停止した後、再始動を行います。もし 始動できない場合は、IDLE Speed ノブを時計回 りに回し、アイドリング回転数を増加させてくだ さい。
- 6.4 速度ゲイン (GAIN)、積分 (INT)、微分 (DIF) の調整
- 6.4.1 エンジンを通常回転数まで始動させた後、GAIN ノブを時計回りに回してエンジン回転数が大き く揺れたところで、今度は反時計回りに回し、回 転数がちょうど安定するポイントに調整してく ださい。(6.4.3 に進み、調整を続ける)
- 6.4.2 エンジン回転数の振動周期が 2~5 秒ごとに発生する場合は NNTをゆっくり反時計回りに調整し、回転数が安定するまで調整してください。もし全範囲の調整を行っても揺れが止まらない場合、それは極端に応答の遅いエンジンである可能性があります。その場合はディップスイッチ 6 (極端に遅い応答エンジン用)を ON にし、本手順を繰り返してください。
- 6.4.3 エンジンに負荷を増減させ、回転数の変動を観察してください。変動幅が大きすぎる場合は、DIFを時計回りに微調整してください。ただし、調整後に回転数が不安定になった場合は、DIFを元に戻し、INTを増加させてください。その後、再度負荷を増減させ、回転数の変化を観察し、連結ロッドが1秒以内に3~5回振動した後に安定するように調整できれば、適切な設定となります。速度ゲイン(GAIN)、積分(INT)、微分(DIF)に関する詳細な説明については、以下のリンクをご参照ください::

https://www.kutai.com.tw/edu/electronic-governor-controller-system-concept.html

注意

- 1. 過小な GAIN 値では、調整後の再始動時にエンジンが直接オーバースピードする、または低速で振動する(周期が 3-5 秒ごと)といった状況が発生する可能性があるため、極端に低い設定は避けるべきです。
- 2. GAIN や DIF を過剰に調整すると、エンジン回転数が不安定になりやすくなります。そのため、GAIN と DIF の配分量を何度も増減させながら最

適な設定を見つける必要があります。

3. エンジン回転数の不安定には、2-5 秒ごとに振動する「低速振動」と、1 秒間に 2-8 回振動する「高速振動」の 2 種類があります。低速振動は通常、GAIN が小さすぎるか INT が大きすぎることが原因です。一方、高速振動には以下の 2 つの状態があります。

1 秒間に 2-4 回振動する場合は、GAIN が大きすぎることが原因です。

1 秒間に 4-8 回振動する場合は、DIF が大きすぎることが原因です。

6.5 遠隔速度調整(REMOTE SPEED POT)

EG3002 は、2 種類の遠隔速度調整方法を提供しています。1 つ目は、 $5k\Omega$ の可変抵抗を使用する方法で、最大 60 メートルの距離内で $\pm 7\%$ の速度調整が可能です。 2 つ目は、アナログ電圧信号を入力する方法で、1VDC あたり 1.5%の速度調整が可能です。接続方法については、第 5 章の結線図を参照してください。

注意

可変抵抗の抵抗値を増減しても、外部周波数調整 範囲は変わりません。

外部周波数調整範囲を広げる場合は、端子 8 と 9 を短絡し、可変抵抗の中央端子に接続してください。

外部周波数調整範囲を狭める場合は、端子 9 と可変抵抗の中央端子の間に抵抗 R を直列接続してください。

6.6 発電機の同期並列運転

発電機を同期並列運転する際は、速度下垂率(DROOP)を使用して発電機間の有効電力を分配する必要があります。DROOPの設定は、時計回りに回すと速度ドロップ率が増加し、負荷がフルの状態で速度が約2%低下するように調整してください。

DROOP の計算式は以下の通りです。

 $F1 = (1-D) \times F2$

F1 = 負荷投入後の回転数(周波数)

D = 設定されたドロップ率 \times 負荷割合

F2 = 通常の回転数(周波数)

例: エンジン回転数が 1800 RPM で、フル負荷時に周波数が 3%低下するとします。負荷が 80%投入された場合、負荷投入後の回転数は以下のように計算できます。

負荷投入 80%後の回転速度 = (1-0.03 x 0.8) x 1800 = 1757 RPM.

第七章 故障診断表

故障状況	可能な原因	点検(対処)方法
7.1 スターターモー	1.電源が入力されて	1. 始動時に、ガバナーの端子1及び2に正常な電圧が入力され、
ターは作動する	いない	極性が正しいことを確認する。
が、エンジンが始		
動しない		
	2. MPU 異常(故障、	2.コントローラーの端子 10、11 の配線を取り外し、2 本の線の
	断線、取り付け不	抵抗値を測定する。抵抗値は 10~1,000Ω の範囲である必要
	良等)	がある。開回路または短絡がある場合は、MPU からコントロ
		ーラーへの配線に断線や短絡がないか確認し、直接 MPU の
		インピーダンスを測定する。インピーダンスが 10~1,000Ω
		の範囲外で開回路または短絡している場合は、MPU を交換す
		る。また、MPU の各端子と金属ケース間の抵抗を測定し、導
		通がないことを確認する。短絡している場合は MPU を交換
		する。始動時にコントローラーの端子 10、11 に 1Vac 以上の
		電圧が入力されているか測定し、1Vac 未満であれば MPU 先
		端とギアの隙間を確認し、0.037mm~0.127mm の範囲内で
		あることを確認する。
	3.アクチュエーター	3. 上記 2 項目が正常であれば、始動時に端子 4、5 に電圧が出力
	の断線	されているか確認する。電圧が出力されているにもかかわら
		ずアクチュエーターが動作しない場合は、アクチュエーター
		の配線回路に断線がないかを引き続き確認する。
	4. アクチュエーター	4.アクチュエーターのリード線をコントローラーから取り外
	の故障	し、リード線の短絡や外装への絶縁不良がないか確認する。
		また、アクチュエーターの2本のリード線を直接バッテリー
		に接続し、全角度で動作するかを確認する。
	5. その他の原因	5.エンジン停止時に手でリンケージを動かし、スムーズに動く
		かを確認する。上記すべてが正常であれば、エンジン始動中
		に手動でアクチュエーターのリンケージを動かし、それでも
		始動しない場合は、その他の始動条件(燃料、燃料バルブ、停
		止レバーなど)が満たされているかを確認する。
	 1.区間周波数選択ス	1. 参照調整章節.
低下	イッチ設定ミス	
	2.アイドルモードに	2. 端子 2、3 にショートがないか確認.
	留まっている	
	3.外部信号による異	3.端子 6、7、8、9 を使用している場合は、接続を取り外して
	常	からテストを行い、正常に戻る場合は外部信号の異常です.
	4. MPU 信号異常	4. MPU が断線していないか確認 (コントローラーの 10、11 ピ
		ンを直接測定し、約 $10-1,000\Omega$ の間で正常)。コントロー
		ラーの $10 \cdot 11$ ピンに $1 extsf{Vac}$ 以上の電圧入力があるか確認。
		もし 1Vac 未満の場合は、MPU の上部とギア間の隙間を確認
		し、0.037mm~0.127mm の間であるべきです。
		MPU が適切な絶縁線と接地銅ネットを使用しているか、片
		側接地がないか確認し、必要に応じて配線を修正してくださ
		<i>د</i> ۲.

EG3002 7

 故障状況	 可能な原因	点検(対処)方法
7.3 エンジン回転数	1. 区間周波数選択ス	1. 調整手順を参照してください.
7.5 エックラ 	イッチの設定誤り	1. 両走丁原と乡然してくたとい。
20 英市10回0	2.外部信号による異	 2.端子 6、7、8、9 を使用している場合は、一度配線を取り外
	常	して試験を実施してください。取り外し後に正常に戻る場
		合、外部信号が異常である可能性があります.
	3. MPU 信号異常常	3.MPU の断線を確認してください。(コントローラーの端子)
		10、11 間の抵抗値を直接測定し、10-1,000Ω の範囲内で
		あれば正常です。) コントローラーの端子 10、11 に 1Vac 以
		上の電圧が入力されているか確認してください。1Vac 未満の
		場合は、MPU の先端とギア間の隙間を確認し、0.037mm~
		0.127mm の範囲に調整してください。
		MPU が適切なシールド線および接地銅網を使用している
		か、一方のみ接地されているかを確認し、必要に応じて配線
		を修正してください.
	4.ガバナーの故障	4. ガバナーへ給電後、エンジンが始動していないにもかかわら
		ず アクチュエータのリンケージが動作している、またはガ
		バナーの端子 4、5 に電圧が出力されている場合、ガバナー
74-> > > 0 0 0		が故障している可能性があります.
7.4 エンジンの安定 性が損なわれる	1.設定または調整の 異常	1.調整手順を参照してください.
(規則的な振動)	共币	
(水水河山水水)((東))	 2 .リンケージの取り	 2.機械的なゲインが過大である可能性があります。Kutai 公式ウ
	2 .	ェブサイトの「発電機研修センター」内の"「電子ガバナー制
	13.7 1 00	御システムの概念」"を参照してください.
		https://www.kutai.com.tw/edu/electronic-governor
		-controller-system-concept.html
7.5 エンジンの安定	1 . リンケージの品質	
性が損なわれる	Te	動で前後に動かし、スムーズに可動し隙間がないことを確認
(不規則な振動)		してください。動作がスムーズでない場合、安定調整が困難に
,		なります。例えば、ロッドエンド (魚眼軸受)とピンの間に隙
		間がある、又は金属機構の腐食などが原因として考えられま
		す。
		MPU 信号が外部ノイズの影響を受けている可能性がありま
		す。ノイズ対策として、シールド線を使用し、接地銅網は片側
		のみ接地することを推奨します。また、MPU の配線を短縮す
		ることでノイズの影響を低減できます.

- ※ 製品の性能、仕様、および外観は、改良のため予告なく変更される場合があるので、あらかじめご了承ください。
- ※ 注意: MPU で使用される絶縁ワイヤを接合しないでください。接合すると MPU 信号が乱れ、動作異常の原因となる可能性があります。